
Chapter 1: Introduction

In the past two decades, functional magnetic resonance imaging, hereafter fMRI, has been exten-

sively utilized to understand various mysteries related to the brain. This technology has enabled

scientists to map physical and cognitive actions to different regions responsible within the brain. It

has been used to study the effects of using alcohol, smoking and drug abuse, effects of increasing

age, gender, and demographic associations. Also, the development cycle of the brain, from infancy

to adulthood has been investigated through longitudinal studies on the same set of individuals.

This has facilitated our understanding of the brain and some of the most impacting factors that

govern its development. However, the primary area of research that continues to profoundly de-

pend on fMRI has been classification of various neurodegenerative disorders through the use of

imaging biomarkers. A considerable fraction of the world population is affected by disorders such

as schizophrenia, bipolar personality disorder, autism and so on. Through the combined use of

advanced classification methods and fMRI, it is now possible for clinicians to identify brain regions

that show significant differences, based on activation patterns to certain audio and visual stimuli,

between patients and healthy individuals. In addition, fMRI is being utilized to enable examination

of joint information between tasks that probe different functional domains in patients and healthy

controls. For example, findings show that interesting relationships exist between brain at rest and

brain at task for the same set of subjects [1, 2]. In addition to fMRI, other brain imaging modal-

ities such as diffusion tensor imaging (DTI) and structural MRI (sMRI) are being jointly utilized

to investigate similarities and differences in function and structure of the brain.

Since the results from first Functional Magnetic Resonance Imaging (fMRI) human-based studies

were reported in 1992 by two different groups [4, 5], a plethora of research has emerged using

fMRI, revealing the cornerstones of everything from motor and sensory processes to foundations

of social cognition in humans. A variety of signal processing algorithms are sequentially applied

to the imaging data in order to extract indirect measurements of neuronal activity within the

brain. These algorithms can be broadly classified in to three categories: (1) Reconstruction, (2)
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Figure 1.1: A schematic illustration of the data flow through fMRI processing pipeline comprised
of following steps after the acquisition of raw k-space data: 1) Computation of magnitude and
phase images followed by Reconstruction using inverse Fourier transform; 2) Preprocessing
(motion correction, registration etc.); 3) Data Analysis to generate activation maps also defined
as statistical parametric images (SPI) in [3].

Preprocessing, and (3) Analysis. The schematic shown in Figure 1.1, first summarized by [3],

depicts various relationships between numerous steps involved in fMRI acquisition to processing

to forming models for brain function. All three steps are strongly associated with one or more

type of assumptions that influence the choice of methods used to perform these operations. These

assumptions, independently or collectively, have varying degree of impact on the final results and

inference. The purpose of this thesis is - a) to understand, compare and question the applicability

of various fMRI image preprocessing pipelines in use today and, b) to present new algorithms that,

when used independently or together, can compensate for some of the irregularities introduced in

the data and reveal additional information within the data, leading to improvement in detection

sensitivity of activation patterns.

1.1 What is fMRI?

Functional brain imaging is widely being used to enhance identification of neurological disorders

such as schizophrenia, psychosis, and bipolar personality disorder that are currently diagnosed

on the basis of patients’ self reported experiences and observed behavior. A type of specialized

imaging technique known as functional MRI (fMRI) is used to measure indirect level of brain

activity associated with a physical or mental action. Intuitively, brain activity refers to transfer
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of electrical and chemical energy between neurons in different parts of the brain. However, fMRI

measures changes in deoxy-hemoglobin concentrations in nearby (to neurons) blood vessels, this is

known as blood-oxygen-level-dependent or BOLD activity.

The neurovascular linkage between networks of neurons and blood vessels [6] results in exchange

of energy that further causes change in oxygenated hemoglobin. BOLD activations are considered

an acceptable indicator of bundled neural activity by scientists as the spatial resolution of fMRI

images is many orders greater than the size of a neuron. However, fMRI can help decipher intensity

and boundaries of simultaneous activity across different brain regions, thus making such recordings

a viable measure to study and label underlying relationships that link complex external stimuli to

corresponding brain functions.

During an fMRI experiment, a subject is asked to perform a task, e.g. pressing a button, while

the MRI scanner records the BOLD changes within the brain. Several volumetric images of brain

are acquired using a rapid pulse sequence firing technique known as echo-planar imaging (EPI) [6].

1.2 Preprocessing: An Imperative Requirement

The pivotal role of preprocessing steps in the fMRI analysis is evident from its central position seen

in Figure 1.1. These algorithms interact with almost every decision made in designing, performing

and analyzing results from an fMRI experiment. In addition, the theories of brain function and

disease determine the experimental design variables (event-related, block design or both), which

in turn guide the choice of scanner pulse sequences. Independent of these attributes, the field

strength of the scanner governs the contrast-to-noise ratio (CNR) of the resulting images. Higher

field strength (measure in Tesla (1.5T, 3T etc.)) results in higher CNR. However, this advantage

is somewhat diminished by higher sensitivity to physiological noise, greater artifacts at air-tissue

boundaries, and reduced decay times, thus making choice of preprocessing methods a pivotal deci-

sion in fMRI analysis [3]. With the ever-expanding collection of algorithms and software tools for

preprocessing, one of the primary challenges facing researchers and clinicians is How to choose from

among this plethora of possible pipelines?. The most convenient and widely adopted resolution for
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this concern is based on a method’s availability, familiarity, and ease of use. Usually, this may not

be a medically or scientifically robust choice.

The functional properties of the brain stored in the form of fMRI data need to be analyzed

by appropriate statistical methods. Due to the inherent system properties of the techniques used

for acquiring fMRI, the resulting images are of low spatial resolution and have little anatomical

contrast in addition to suffering from geometric (head motion) and intensity distortions (magnetic

field homogeneity). These limitations may be tolerable when investigating fMRI data for a single

subject. However, in many experiments, researchers want to address two important questions:

• How does BOLD activity map (spatially) on to the corresponding anatomical brain regions?

• How consistent (or different) is this mapping across a sample population (healthy or patients)?

Both these questions are substantially dependent on the the spatial quality of fMRI images that

are tested for activity which in turn depends on the SNR of the data. Thus, it becomes imperative

to map the data onto relatively high resolution and high contrast structural images through co-

registration of fMRI and sMRI data from the same subject. Nevertheless, there remains a problem

of comparing activity across individuals within a study or across different studies. There is a wide

variation in size, shape, orientation, and gyral anatomy of the brain across different individuals.

Therefore, inter-subject comparisons are performed after warping each subject’s data to a common

coordinate space using a brain template so that their brains at least have the same size and shape

as all of the others. This process is known as spatial normalization, and is the first of the last two

preprocessing stages prior to statistical analysis of fMRI.

The last stage in fMRI preprocessing is spatial smoothing and is typically the most common

data preparation step in a variety of fMRI analysis pipelines used worldwide. Clinical decisions

based on BOLD activation patterns are highly influenced by the spatial quality and signal-to-

noise-ratio (SNR) of fMRI images. If the image is extremely noisy, some of most intricate details

associated with the BOLD signal may get obscured or even misrepresented to a great extent during

the statistical analysis. As a solution, spatial filtering is done to improve the functional SNR,

reduce apparent noise, and increase the validity of comparisons across subjects. Prior to spatial
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smoothing, some studies also apply temporal filtering to reduce scanner drift and physiological

noise.

Apart from registration and smoothing, a number of other steps are common amongst prepro-

cessing pipelines for fMRI. These include removing individual slice artifacts due to timing errors

and radio frequency spikes; slice timing correction due to a variety of reasons explained in later

chapters.

1.3 Motivation for Change

An ever-expanding collection of techniques and software tools is available to the functional neu-

roimaging community to assemble and apply different preprocessing pipelines to fMRI data sets [3].

Neuroimaging studies often comprise 10 − 20 or more subjects who undergo an experimental

paradigm. The initial few preprocessing steps operate on temporal information stored in a sin-

gle dimension whereas later stages such as registration, spatial normalization and smoothing utilize

complex 3-D brain structures. Thus, the validation of this class of spatial algorithms is not a trivial

task due to a number of questions that consequently reveal commonly ignored limitations in context

to reliability and reproducibility.

1.3.1 Template-to-Structure Correspondence

Brain templates are normally used as references for mapping different brains in a group analysis

study. Normally, a brain template is constructed by averaging images that are premapped to a

standard coordinate space. There are two main reasons to use brain templates: 1) to obtain a

standard basis for functional activation labeling; 2) to compensate for anatomical variations across

subjects. The role of brain atlases and templates has been thoroughly reviewed by some of the

most prominent studies in this field such as [7, 8]. However, there is substantial doubt as to

whether there exists a perfect correspondence between a subject’s anatomical image and a template.

Numerous studies of anatomical variability in normal [9, 10] and lesioned brains [11, 12] have

suggested that alternate methods be considered. Techniques for construction and application of

5



(a) (b)

(c) (d)

Figure 1.2: Contrast and CNR Comparison: MNI-305 standard average templates as obtained
from the SPM5 library are compared side-by-side with single subject T1 and EPI images: (a) T1
contrast template; (b) EPI template; (c) single subject T1 image; (d) single subject EPI image.
These images are all mapped to the Talairach coordinates and correspond to the same physical
location in the brain. The contrast difference around the ventricle regions is most notable across all
four images. The templates ((a)-(b)) are more blurred than their single-subject counterparts ((c)-
(d)) due to the averaging effect. Each image is arranged as Sagittal (Left), Coronal (Center) and
Axial (Right) geometries.

brain templates depending on class of subjects under investigation, such as disease-specific atlases,

are a viable option to study the differences between diseased and normal populations [13]. The

question raised by many researchers is even if such correspondence does exist with minimal errors

in certain specific studies, how do we measure the accuracy of the transformation estimate? Several

studies have shown that residual variability is of the order of several millimeters [14] with an average

isotropic voxel’s size ≈ 27mm3.

In a series of studies, the Montreal Neurological Institute (MNI) created a brain template

called MNI305 (see Figure 1.2) by averaging a large number of normal MRI brain images [15]. The

International Consortium for Brain Mapping (ICBM) adopted the MNI template by registering 152

normal brains to the MNI template and named the new template ICBM152 [16]. These are the

two most commonly used templates for spatial normalization of fMRI data sets and the have been

incorporated in to several computer analysis packages. These standard templates are representative

of the brain size and shape, whereas the cortical structures are difficult to identify and blurred in

these atlases due to the obvious low pass filtering effect caused by averaging. The classical brain
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Figure 1.3: Templates vs Atlas: INSERT A FIGURE TO SHOW DIFFERENCE BETWEEN
TEMPLATES AND ATLAS. ATLAS will be psuedolabeled images WFU-Pick Atlas, Talairach
etc.. Templates will have images from various labeled atlases.

atlas (anatomical) of Talairach and Tournoux [17] is universally used as an anatomical reference

standard by the neuroimaging community. Note that, the results from analysis done post-mapping

(using ICBM152 or MNI305) are reported in the Talairach coordinate system.

Given the limited power of Talairach transformation in accounting for anatomical variability

across different brains, the spatial locations in template (from MNI or ICBM) and atlas space do

not exactly overlap, the most extreme case being the temporal lobes in MNI space extending 10mm

below the temporal lobes in Talairach brain [7]. As a remedy, an affine transformation to improve

the registration between the two spaces [18] and is used intensively used by those who follow the

aforementioned approach for reporting results. Nevertheless, the inaccuracies introduced due to the

differences between the template used and the reference coordinate space, clearly pose substantial

re-alignment requirements.

1.3.2 Function-to-Structure Correspondence

Intrinsically, an exact correspondence does exist between functional and anatomical images of a

subject, but usually these are not visible when both modalities are compared side-by-side. Factors

such as spatial resolution, signal-to-noise ratio (SNR), difference in sources of contrast, cause the

brain structures to appear vague in fMRI images as illustrated in Figure 1.2.

Current methods for anatomical alignment rely on anatomical features that are identified

through high-resolution structural MRI scans. However, a crucial precursor for developing models

of brain organization and activity is to identify functional neuro-anatomical markers that assist in
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realignment of boundaries corresponding to BOLD activity across various individuals in a popula-

tion. A precision of less than 5 − 10mm in anatomical correspondence between structural (MRI)

and functional images (fMRI) is usually difficult to achieve due to the distortions of echo-planar

imaging (EPI) [19]. For current methods, this correspondence problem between structural and

functional data is largely overlooked especially in the case of spatial normalization where the data

is mapped to a template-based coordinate space. So the question arises, even if we can construct a

viable structural template, how accurate will its correspondence be to functional data, that is the

domain of interest in context to the present analysis. We discuss the different classes of currently

used methods for establishing structure-to-function correspondence and propose a new technique

for functional normalization in the upcoming chapters.

1.3.3 Inter-Subject Variability

There is enough evidence to support the fact that the size, shape, and position of brain structures

are anatomically non-uniform for individuals and show significant differences associated with race,

age, gender, or state of healthiness [20, 11, 21, 7, 22, 23, 24, 25, 26, 27]. However, these structural

differences do not account for any functional variability across subjects. More work is required

to further develop inter-subject registration and spatial normalization techniques for group-based

fMRI studies. During the past decade, methods targeting group-analysis such as using study-

specific templates [28, 29], and cross-task functional re-alignment [27] are gaining popularity and

show substantial promise in reducing post-analysis artifacts due to inter-subject morphometric

differences and even reveal new and improved statistical relationships across different regions of

the brain. These studies can be seen as compelling evidence that anatomical variations within a

group as well as differences in scanners (sequences, other errors) used for acquisition of various

templates or subjects’ images can cause considerable spatial distortion when mapping data to a

common co-ordinate space. Eventually, such distortions cause the statistics to change significantly,

and lead to partially incorrect spatial maps showing patterns of cognitive activity.

One of the primary challenges researchers have repeatedly pointed out for future research is

the effect of spatial normalization on functional maps in group studies. With the advent of MRI
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systems that provide higher fMRI resolution and localization of brain activity, a parallel effort

in advancing high resolution template construction and hybrid spatial normalization methods is

called for. Identification of functional biomarkers signifying good health or disease at an individual

level are being given prominent importance in studies which will eventually help in advancement

of personalized drug discovery, patient-specific, and use of disease specific medicine.

1.3.4 Gaussian Smoothing: Brain is not Isotropic

Interestingly, the smoothing and spatial normalization steps rather share a very close relationship,

specifically in terms of their sequential application within the preprocessing pipeline. The concerns

raised in Sections 1.3.1-1.3.3 earlier have long been known, and have been discussed before by [30, 14]

along with illustrative examples. The first and classical solution to address these has been to

sacrifice the spatial resolution of fMRI to increase robustness against registration and normalization

errors. The most commonly utilized method for this task is to smooth the fMRI image with full-

width half-maximum volumetric Gaussian kernels [31]. It is not unusual to apply an 3-D 8−10mm

smoothing kernel to fMRI datasets (with isotropic voxel size up to 3mm) before performing a group

analysis.

Two straightforward implications of such an approach for smoothing can be realized as follows:

• Isotropic smoothing kernels are not optimal for neuro-scientific observations since they do not

necessarily address the underlying variations in shapes and sizes of the anatomical regions or

the functional clusters.

• This method also overlooks the spatial variations across subjects. These differences may be

subtle structurally, but due to the variability in genetic and epigenetic factors across subjects,

functional variability plays a major role in group analysis as also depicted in [32].

The Gaussian smoothing methodology is also widely applied as it suppresses high-frequency

noise. Furthermore, it is simple to implement and most importantly increases the overall signal-to-

noise ratio (SNR). The drawbacks of Gaussian smoothing in the signal domain include considerable
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change in true intensity values (as a function of the size of the smoothing kernel), and the long-

standing issue that the noise is averaged along with the signal. These effects make it more difficult

to accurately separate signal and noise during the later stages of analysis, particularly when the

noise is spatially or temporally varying. In addition to the above, the Gaussian smoothing approach

suppresses the edge details and other medium-frequency information present in the original image.

1.4 Research Goals & Broader Impact

Neuroimaging researchers continue to pursue methods that may assist in overcoming the shortcom-

ings discussed above. The goals of this doctoral study are to identify specific properties of existing

spatial preprocessing methods and subsequent effects on the data, and develop new techniques that

may tie together and help alleviate some of the undesirable effects of the normalization-smoothing

pair applied just before analysis of fMRI data. In this thesis, an argument detailing the method

and its need for function-specific templates and a novel normalization framework is presented. In

addition, an adaptive wavelet-based denoising technique is proposed that proves to be a viable

alternative to Gaussian smoothing. The wavelet-based method is exercised for its ability to address

issues discussed above, specifically improving the specificity of activation contours and preserving

the true shape of activations. This approach weaves in with our proposed functional normalization

framework and provides a basis for answering questions raised above that mostly revolve around

inter-subject variability and other problems relating group fMRI preprocessing pipelines. The

contributions of this doctoral work are briefly listed and discussed as follows:

1. We present a framework for spatial normalization for a group of subjects by utilizing their

intrinsic functional boundaries in contrast to other existing methods which use structure as

a reference [33, 34]. We enable our framework by a method for constructing a functional

template that represents default boundaries of various regions involved in performing various

functions of the brain. This template can be modified to comprise one or more networks

available from analysis of resting-state fMRI data. The number and class of networks depends

on the nature of the cognitive task that the target data set corresponds to in addition to brain
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regions activated during the task.

2. We developed a novel 3-D wavelet-based fMRI denoising framework to improve the quality of

images while being able to get rid of the spatial noise [35, 36, 37]. This is a flexible smoothing

method that is independent of its point of application, that is, it may be applied before or after

spatial normalization. Our proposed technique is able to preserve the edges, and other spatial

details within the brain images while maintaining the homogeneity of the original BOLD signal

values across the brain. The denoising method has been repeatedly verified using simulated as

well as real data and compared successfully against the currently used methods for denoising.

The algorithm is available for download on the web as a MATLAB R©based software toolbox.

3. The third and final contribution of this work is a validation method to quantify the 3-D

spatial shape of BOLD activity within the brain. This technique focuses on comparing two 3-

D activation clusters based on shape, size and anatomical location finally resulting in a single

number or metric that represents this difference. This metric utilizes slice-wise measurements

of 3-D shape in order to create a metric for comparing two shapes. This algorithm has been

validated on multiple group fMRI data sets and presented as a validation method in our recent

work [35, 36, 37]. Other applications of this metric were also identified during its development

such as understanding the spatial dynamics of brain activity during rest. This application is

discussed with examples in later chapters. The metric is metric has been incorporated in to

a MATLAB-based toolbox for ease of use and application.

1.5 Perspective

I hope this doctoral work will help alert researchers to important concerns regarding current pre-

processing approaches in fMRI and help them to select the methods best suited for their research.

Some of the pivotal features of this doctoral work that, in my opinion, may leave a lasting impact

on the field of neuroimaging, specifically fMRI analysis, are listed below:

• Preprocessing of images substantially governs the outcome of fMRI analysis, with direct

implications from the use of fMRI data for diagnosis and discerning brain function. With
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better techniques available, diagnosis can be more specific and new unseen imaging biomarkers

can be identified. The methods proposed in this thesis may help in reduction of false positives

and improve the functional localization of brain activity.

• Methods developed in this work offer increased flexibility in terms of point of application

of various preprocessing methods. For example, if smoothing is independent of its associa-

tion with normalization, it may be applied at the beginning of preprocessing (before motion

correction). This added flexibility, if validated with proper methods, can help remove other

sources of noise that may have been amplified by other steps such as motion correction and

realignment.

• The role of some unexplored regions in the brain that are obscured due to nonadaptive

processing can be more clearly understood. Better functional localization of brain activity

may reveal additional relationships between spatial dynamics across various sub-regions of

an activation region. Undesired effects such as intensity leakage from inactive neighboring

voxels may be reduced, thus improving the statistical significance of the active clusters and

revealing relatively small regional activity that may have been averaged out before.

• Use of multiple states of the brain (at rest or during a cognitive task) can be used collectively

to form a stronger foundation for understanding of a normal brain as well as that of a patient

with certain neuro-development disorders.

• Shape Metric may assist in quantification of the spatial structure of activation maps and

related variability within a group (subject-to-subject) or across groups (health-to-patient).

Clustering subjects based on their similarity in shape of activation can provide powerful priors

for data fusion (fMRI,EEG etc.) and subsequent analysis where subjects with largely different

activations can be segregated from the fusion study and examined separately.

• Resting state dynamics of the human brain have been under increased investigation within

the fMRI brain imaging community but are still not largely understood in terms of spatial

modulations over smaller units of time. With the help of adaptive signal separation, spatial
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activity corresponding tothe parcellated time axis can be compared based on shape and

the amount of change in shape over time. Metrics proposed in this thesis can be used to

investigate these dynamics in healthy controls, the patients and help to identify the region-

specific relationships separating these two groups.

1.6 Organization

The rest of this document is organized as follows: WILL FOLLOW ONCE I ORGANIZE ALL

THE CHAPTERS.
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